Exercise 56

(a) The curve $y=|x| / \sqrt{2-x^{2}}$ is called a bullet-nose curve. Find an equation of the tangent line to this curve at the point $(1,1)$.
(b) Illustrate part (a) by graphing the curve and the tangent line on the same screen.

Solution

A point on the tangent line is known, so all that's needed is its slope. Take a derivative of the given function

$$
\begin{aligned}
y^{\prime}=\frac{d}{d x}\left(\frac{x}{\sqrt{2-x^{2}}}\right) & =\frac{\left[\frac{d}{d x}(x)\right] \sqrt{2-x^{2}}-\left[\frac{d}{d x}\left(\sqrt{2-x^{2}}\right)\right](x)}{2-x^{2}} \\
& =\frac{(1) \sqrt{2-x^{2}}-\left[\frac{1}{2}\left(2-x^{2}\right)^{-1 / 2} \cdot \frac{d}{d x}\left(2-x^{2}\right)\right](x)}{2-x^{2}} \\
& =\frac{(1) \sqrt{2-x^{2}}-\left[\frac{1}{2}\left(2-x^{2}\right)^{-1 / 2} \cdot(-2 x)\right](x)}{2-x^{2}} \\
& =\frac{\sqrt{2-x^{2}}+\frac{x^{2}}{\sqrt{2-x^{2}}}}{2-x^{2}} \\
& =\frac{\frac{2-x^{2}}{\sqrt{2-x^{2}}}+\frac{x^{2}}{\sqrt{2-x^{2}}}}{2-x^{2}} \\
& =\frac{2}{\left(2-x^{2}\right)^{3 / 2}}
\end{aligned}
$$

and evaluate it at $x=1$.

$$
y^{\prime}(1)=2
$$

Therefore, the equation of the tangent line to $y=|x| / \sqrt{2-x^{2}}$ at $(1,1)$ is

$$
y-1=2(x-1)
$$

Below is a graph showing the function and the tangent line.

